Advanced modeling techniques for the optimization of powder bed fusion additive manufacturing processes

Presented By: Michel Pereme
January 9, 2019
Agenda

1. Simufact Company and Product Lines
2. Challenges of Metal Powder Bed Fusion Processes
3. Simulation of Metal AM
4. Case Study and Software Demo
Simulating Manufacturing - The Manufacturing Division of simufact

- Supporting the optimization of metal-based manufacturing processes
- Manufacturing oriented process simulation
- Technology based on MSC MARC and MSC DYTRAN solvers
Global MSC Product Portfolio - Materials to Systems

- Materials
 - Digimat
 - Digimat-VA
 - MaterialCenter
 - Simufact Additive
 - Simufact Additive
- Fabrication
 - MSC Apex
 - Marc
- Parts
 - Simufact Welding
 - Simufact Joining
- Assembly
 - SimManager
 - sc/Tetra
 - Patran
 - scFLOW
- Systems
 - Adams
 - AdamsCar - Realtime
 - Nastran
 - Actran
Simulating Manufacturing - The Manufacturing Division of Simufact
Powder Bed Fusion AM
Challenges in Design of Metal AM Parts

Main pain points

◆ **Distortion** → Part out of Tolerances
 → Collision with Recoater

◆ **Residual Stresses** → Part or Support Failure during Manufacturing

◆ **Support Structures** → Wrong location or design

◆ **Consequences** → Possible Build Job Abortion
 → Iterative Trial & Error

Finally: Wasting Time & Money 😞
Objectives

Objectives of AM process simulation

◆ Objective #1
 ▪ Prediction of final shape (distortions)
 ▪ Determination of support structure strategy
 ▪ Identification of risks of job abortion
 ▪ Prediction of residual stresses

◆ Objective #2
 ▪ Microstructure, durability, surface quality.

Source: Renishaw
Analysis Scales

◆ **Macro Scale**
 - Element layer (> powder layer) analysed in one step
 - Inherent Strains - pure mechanically, extremely fast
 - Delivers Distortion & Stress ✓

◆ **Meso Scale**
 - Element layer analysed in one step or by hatching segments
 - Thermal, mechanical or thermo-mechanically coupled
 - Able to deliver approximate thermal history and derived results

◆ **Micro Scale**
 - Moving heat source on solid
 - Transient fully thermo-mechanically coupled
 - Delivers thermal history and derived results like microstructure

◆ **Nano Scale**
 - Moving energy beam - absorption & reflection at powder level
 - Heat transfer, radiation, convection, fluid dynamics
 - Detailed basic investigations

Macro-Scale: Mechanical Approach

Inherent strains

- **Comprise**
 - Plastic strains
 - Thermal strains
 - Creep strains
 - Phase transformation strains

- **Reflect**
 - Material
 - Manufacturing parameters
 - (Individual) machine

Calibration to determine inherent strains
Meso-Scale : Thermo-Mechanical Approach

Macro to meso scale thermal / thermo-mechanical

- Element layer- to segment wise activation
- Application of thermal loads
- Optional thermo-mechanical coupling
- Enables to predict
 - Distortion of Part, Supports & Base Plate
 - Stress
 - Peak temperatures
 - Heat Fluxes
 - Simplified thermal history
 - Derived results (tbc)
AM process chain simulation

Stress relief heat treatment

- Temperature curve
- Temperature dependent material properties
 - Elastic modulus
 - Stress-Plastic strain flow curves
 - Conductivity, Specific heat capacity
- Creep laws
 - \[\dot{\varepsilon} = A \sigma^n A \exp\left(-\frac{Q}{RT}\right) \]
 - \[\dot{\varepsilon} = A \left[\sinh(\alpha \sigma) \right]^n \exp\left(-\frac{Q}{RT}\right) \]
AM process chain simulation

Hot isostatic pressing

- Temperature + pressure curve
- Temperature dependent material properties
- Creep laws
- Densification acc. to power law

\[\rho = 1 - (1 - \rho_0) e^{-\frac{3P}{2\sigma_{\text{yield}}}} \]
Simufact Additive Automatic Geometry Compensation

- Simufact Additive provides an active **compensation strategy** to get rid of initial, process depending distortions
- Geometry compensation is the key for a controlled, robust AM process to meet the required tolerances
- After running a compensation based on simulation (might happen in several iterations) the real build will deliver valid parts with the first shop-floor build job

First Time Right
Case Study

Additively manufactured lightweight engine hood hinge
LightHinge+

Additively manufactured lightweight engine hood hinge
LightHinge+ project partners

- Initiator of project
- Independent engineering company of the automotive industry
- Experts for lightweight construction and additive manufacturing
- Concept and component development

- Austrian metal material, metal parts & engineering supplier
- Prototype production and application know-how

- German software company focused on manufacturing simulation
- AM Process simulation with Simufact Additive
- Distortion compensation by pre-deformation
Active Hood System

2018 REGAL ACTIVE-HOOD TECHNOLOGY

BUICK
Context

Current system

◆ Active hood systems vs. conventional hood closure cause significant increase in weight
◆ Active hood complex kinematics leads to many issues with assembly and tooling cost

Targeted segment: small and sports car

◆ Current active hood system not applicable to small and sports car segment (too heavy, too bulky)
◆ Small series (80 – 30.000 p. a.) cannot be operated efficiently with technologies from mass production
LightHinge+ - The Concept

Goal for the small series and sports car segment

- Ultra lightweight
- Maximum component and function integration
- Tool-less and update-capable production
Additive manufacturing only works economically if the highest degree of functional integration in the component is achieved.

- Topology analysis without consideration
 - a) of the functional integration
 - b) of the manufacturing concept
leads the design engineer on a "wrong mechanical track".

Concept of "breakaway structure" instead of "kinematics"

⇒ Success factor for weight minimization

- Designers must think out of the box (creative and experience-based solution)
Additive manufacturing only works economically if the highest degree of functional integration in the component is achieved.

- Topology analysis without consideration
 a) of the functional integration
 b) of the manufacturing concept
 leads the design engineer on a "wrong mechanical track"

Concept of "breakaway structure" instead of "kinematics"

➡ Success factor for weight minimization

- Designers must think out of the box (creative and experience-based solution)
LightHinge+ - The Design

- **Ultra lightweight**
- **Maximum component and function integration**
 Integrated pedestrian protection function
- **Tool-less and update-capable production**

Wiping water hose guide

Fragile structure

Connection point gas spring

Collar screws guide

Hood hinge function + Pedestrian protection function

Comparison:
- 19 parts
 - 1.49 kg
 - 51% reduction to 0.72 kg
- 6 parts
 - 0.72 kg
 - 68% reduction to 0.24 kg

Lightweight construction potential
Function integration
Cost impact
Sustainability & resource efficiency
LightHinge+ - The Outcome
Some Details
AM Process Design

Virtual Tryout
Support Structure Optimization

Experience based knowledge

Simulation based knowledge

> 50 % of whole material usage required for support

< 18 % of whole material usage required for support
Calibration of AM Process Simulation

- Cantilever specimens with different scanning strategies have been printed by voestalpine.
- The cantilevers have been cut and the deformation measured.
- Deformations have been input into simufact additive.
- The inherent strains that reflect the manufacturing process loads have been calibrated.
Model setup for AM simulation

- Import part geometry
- Import support structure geometries
- Select material from database – 316L steel
- Define process chain to be simulated (build part, cut from plate, remove supports)
- Mesh geometries with voxels
AM simulation of single parts

Simulation of
- Building the part
- Cutting from plate
- Removing support structures

Calculation times
- Lower bracket
 - ~ 20 hrs on 16 cores
- Upper bracket
 - ~ 4.5 hrs on 8 cores
AM simulation of real-life build space

- Actually six parts are manufactured simultaneously
 - 3 lower brackets
 - 3 upper brackets

- Simulation of
 - Building the parts
 - Cutting from plate
 - Removing support structures
Simulation results – Residual stresses

- Effective stresses shown
- Stresses are calculated based on non-linear elastic-plastic material model with realistic stress-strain relationship (flow curve)
- Yield stress at 585 MPa
 - Plastification leads to permanent deformation = distortion
- Ultimate strength is 685 MPa

=> No failure expected
Simulation results – Distortion

- Total displacement shown

- Other results available:
 - Residual stresses
 - Risk of tearing
 - Support separation
 - Layer-Z displacement
 - Risk of wiper collision
Distortion of manufactured part vs. CAD

→ Parts out of tolerance (distortions > 1 mm)
Validation by optical measurement

With kind support from

...AICON
3D Systems

Hexagon Manufacturing Intelligence
AM Process Design

Optimization
Pre-deformed shape for distortion compensation

- Simulated distortion is inverted
- Inverted distortion is mapped on surface STL
- Pre-distorted STL is exported
- Exported STL was used for optimized AM of distortion compensated parts

NB: shown distortions are overscaled by a factor of 10 for better visualization
LightHinge+ Distortion Compensation

- Required tolerances could be achieved within the first print job
- Reduction of the initial distortion in one step by approx. 50% - 80%
- Production time and costs reduced

Distortion NOT compensated
Shape deviations up to 1.5 to 2.0 mm

Iteration „zero“

Distortion compensated
Shape deviations < 0.75 mm

Optimized after simulation

Distortion NOT compensated
Shape deviations up to 1.5 to 2.0 mm

Iteration „zero“

Distortion compensated
Shape deviations < 0.75 mm

Optimized after simulation
Conclusion
Conclusion

- Realizing a new, innovative hood hinge
- Combining ultra lightweight by bionic approach with additively manufactured breakaway structure (pyrotechnically triggered)
- Significant reduction of initial distortion based on simulation based compensation strategy
- Cost efficient production due to minimized support structure and optimized printing strategy
LightHinge+: Summary

Traditional sheet metal part
- appr. 6-20 €/piece (only mass production)
 - not small series capable
 - punching, riveting, sheet metal forming
- 1.490 g
- 19 parts (incl. norm parts)
- high fixed capital
- Significant package space required

Innovative AM part
- Appr. 500 - 1.000 €/piece
 - in small series
 - tool-free, updateable
- 720 g
- 6 parts (incl. norm parts)
- very low fixed capital
- Small package space
Innovative Simufact

German Innovation Award 2018

German Stevie Award in Gold

Best of 2017

Best of Industry Award 2018

Materialica Design + Technology Gold Award 2018

Nominee in the category Additive Manufacturing